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Phase I is a one-year effort to investigate and evaluate the feasibility 
of the solution proposed and/or the merits of the scientific path of 
inquiry.

Phase II will seek to mature the science and technology developed 
to a sufficient level that it can be utilized by the SECA Industry Teams. 



Technical Issues to be Addressed

Thermomechanical Damage and Failure
Thermal stresses due to thermal mismatch
Delamination and fracture due to thermal mismatch and thermal shock
Warpage due to thermal mismatch
Seal reliability

Thermal Transport 
Flow, heat and reagent species transport in porous media
Thermal radiation heat transfer in porous media
Coupling between radiation heat transfer and other modes of heat transfer
Source/sink terms for transport equations due to electrochemical reactions

Electrochemistry
Cell and stack level engineering models
Interdependency between electrochemistry and thermal/mass transport 
Transient processes and failure modes



Electrochemistry



Model Objectives Achieved

Ø Engineering Code
§ Accurate and viable

§ Customized structural-language algorithms that are 
portable to software

§ Enhanced designer insight via graphically intuitive trends

ØComplement to SECA DOE National Labs’ Efforts
§ Resolution of reformate stream analysis (NETL)

§ Automated convergence upon set fuel utilization (PNNL)



• Anode-supported cell
• Designs capable of 2 W/cm2

• P-E-N dimensions from Kim, J., Virkar, A. V., Fung, 
K., Mehta, K., and Singhal, S., 1999

Interconnect (~1500 micron LaCrO3)

Anode (-) (~750 micron porous Ni-YSZ)

Electrolyte (~10 micron YSZ)

Cathode (+) (~50 micron LaMnO3)

Interconnect (~1500 micron LaCrO3)Not to scale

Planar SOFC Co-flow Diagram



Planar SOFC Co-flow Model
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PH2   PH2O PCO   PCO2   PCH4 

Pressure(n)=f(xi, Po)
PO2   PN2

Pressure(n+1)=f(xi, Po)
PH2   PH2O PCO   PCO2   PCH4 

Pressure(n+1)=f(xi, Po)
PO2   PN2

Flow rates(n)=f(Pi, Qfuel, i(n))
NH2   NH2O NCO   NCO2   
NCH4 Ntotal

Flow rates(n)=f(NOS, Ntotal)
NO2   NN2

Flow rates(n+1)=f(P i, Qfuel , i(n))
NH2   NH2O NCO   NCO2
NCH4 Ntotal

Flow rates(n+1)=f(NOS, Ntotal)
NO2   NN2

Temperature(n)=f(Q(i)) Temperature(n+1)=f(Q(i))

i(n)

i(n)

nO2

A
no

de
ch

an
ne

l
C

at
ho

de
ch

an
ne

l

1 2 3 n

Air

Fuel

L

( ) 









+−








−+−−−=

asOH

H
o ip

ip

F
RTi

F
RT

iiEiV
o

o

2

21ln
2

1ln
2

ln
as

i
i

baR

Electrochemical model is a combination of the polarization model of 
Kim et al. (1999) and Haynes’ slice technique (Haynes and Wepfer, 1999)



Planar SOFC Co-flow Model Validation
• Model agrees with experimental data
• Discrepancies, primarily differences in fuel 

utilization, caused by comparing a button cell to 
a much larger channel model
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• Assumptions
– Isothermal channels as a design goal
– Convection to air stream is the dominant form of cell 

thermal management
– Laminar, hydrodynamically fully developed flow at the 

leading edge due to extensive manifolding 
• Methodology

– Use well-regarded laminar flow Nusselt correlations for 
airflow within rectangular ducts, to determine 
appropriate inlet air temperatures and resulting cell 
temperature profile

– Vary parameters as required to determine impact
• Voltage
• Fuel utilization
• Fuel-based inverse equivalence ratio / “number of 

stoichs” (NOS)

Thermal Model for Cells



Promoting Isothermal Cells
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Graphically Intuitive Design 
Aids Development



Fuel Cell M&S Updates
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Latter Phase I/ Phase II Developments

ØGreater collaboration with SECA-affiliated 
national labs

ØMitigation of transient mode failure
§ Process optimization of transitional phase 

of SOFC start-up via modifications to fuel 
utilization, load allowance, etc.
§ Resolving mini thermal cycles due to load 

fluctuation



Latter Phase I/ Phase II Developments

ØEnhanced integration with colleagues for                       
multi-physics simulation and mitigation of 
thermomechanical failure modes. 
Examples:

§Strength requirements for designated 
operating conditions

§Gleaming effective mass transport 
diffusivities for better characterizing 
concentration polarization 

ØViable performance/reliability tools and 
training for industry



Thermal-Fluid Modeling of SOFC



Thermal-Fluid Modeling of SOFC

Focus of Thermal – Fluid Modeling Efforts

Porous Media Modeling Radiation Modeling
• Knudsen, dispersion, diffusion-
thermo (Soret) and thermo-
diffusion (Dufour) mass and heat 
transfer effects

• Non-equilibrium heat transfer in 
porous electrodes to account for 
unequal gas and solid matrix 
temperatures

• Effective thermal conductivity of 
solid matrix of porous electrodes

• SOFC’s are high temperature 
systems – radiation modeling 
important

• Coupling between radiation 
and other modes of heat 
transfer affects reaction rates 
and cell output voltage

• Discrete Ordinate Method is 
computationally intensive –
need for alternate modeling 
schemes



Radiation Modeling – Optical Properties
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Radiation Modeling – Discrete Ordinate Method
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• Inclusion of radiation results in ~150 oK drop in the overall temperature level of the 
monolith type SOFC

• Coupled radiation effects result in increase of cell voltage from 0.65 V      0.74V
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Porous Media – Reagent Transport Modeling

Species Conservation – Reagent and Intermediate Mole Fraction:
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Momentum Conservation - Forchheimer and Brinkman Model:

µe - effective viscosity ε - porosity
K - permeability
f - inertia coefficient



Porous Media – Diffusion Modeling
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Porous Media – Energy Conservation Modeling
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Energy Conservation: Non-Equilibrium Thermal Model:

Non-equilibrium thermal model necessary when:

a) Difference in solid and fluid thermal properties is non-negligible
b) Significant generation in porous media – existence of hot spots
c) Low Reynolds number or flow velocities through porous media

kg,eff - gas phase thermal conductivity ks,eff - solid phase thermal conductivity
hv - volumetric heat transfer coefficient        ∆Hi - enthalpy of reaction species



Research Tasks – Accomplishments & Future Work

• Thermal radiation effects were investigated by coupling of radiative heat transfer 
and other modes of heat transfer à significant effects on the temperature and cell 
voltage were found warranting more detailed analysis, including experiments.

• Accurate models of species transport physics and the effective properties for reagent 
transport in the porous electrodes are currently being developed.

March ‘03 May ‘03 July ‘03 Sept. ‘03 

Develop and validate radiation models 
for different fuel cell configurations

Linking of Fluent, ANSYS & Electrochemical models

Implement porous media modeling schemes

Develop porous media transport models



Thermomechanical Failure Analysis



Major Thermomechanical Failure Modes and 
Mechanism

• Warpage
• Cracks in seal
• Cracks in electrodes
• Cracks in electrolyte
• Delamination of interfaces
• Creep/fatigue of interconnects
• ?? (industry inputs) 

• Thermal mismatch
• Thermal gradient (spatial)
• Thermal shock (temporal)
• Thermal diffusion
• Mass diffusion 



Modeling Methodologies

Cell Structure
(L > 10-3 m)

PEN Structure
(10-5 m <  L <  10-3 m)

Material Structure
L < 10-5 m
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• Seal failure
• Seal design
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Warpage and Stress Analysis 
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Finite Element Analysis

Deformed shape

In-plane normal stress (σx)

Shear stress (σxy)

Out-of-plane normal stress (σy)Finite element mesh

anode

cathode

electrolyte

Single cell
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Effective Properties of Porous Electrodes
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Failure Analysis Activities for the Next 6 Months

1.1  Obtain fracture mechanics parameters for cohesive, interfacial and 
impinging cracks.

1.2  Model spalling phenomenon and thermal expansion induced stress 
during thermal transients and shock.

1.3  Identify and quantify crack path selection and crack propagation.

1.4  Implement temperature gradient as driving force for cracking. 
Investigate the individual and combined influences of 
electrochemical and mechanical load stress, as well as temperature 
gradients on crack initiation and propagation. Review and 
utilize/adapt, where appropriate, existing, available fracture 
mechanics models in order to advance the state-of-the-art.

1.5  Evaluate and validate the accuracy of developed fracture mechanics 
models using either experimental data or modeling results from 
PNNL/NETL/ORNL or other SECA members.



GT Project Summary

Major Accomplishments of the First 4 months
• “Slice technique” model/code to simulate the polarization 

curve, and reformate stream analysis model.
• Radiation models and porous models for thermal/fluid analysis.
• Models for cell deflection, thermal stresses, buckling induced 

delamination and thermal shock induced microcracking.

Focus for the Next 6 Months
• Enhance, improve, test and validate the models developed 

during the first 4 months.  
• Integrate these models into a common computational testbed

vehicle (a model cell) for validation.
• Transfer GT’s modeling modules to the PNNL/NETL 

simulation platform.


